E SCI-IOQh s ate.

CON==ReENcs
v ' s

Posters
From the Grid Science Winter School



Decentralized Primary Frequency Control in Power Networks

Changhong Zhao and Steven Low rd
Electrical Engineering, Caltech Nefiab
Motivation Technical Approach
d Normal operation of power networks: all buses synchronized to Problem Eormulation
nominal frequency (60 Hz)

d Supply-demand imbalance - frequency deviation Design decentralized controllers for (g,d), such that the closed-
degrade load performance; overload transmission lines; Ioop system has an asymptotically stable equilibrium, where
trigger protection devices; damage equipment (p',d ,d",P") solves the economic efficiency problem:

T e: 253820 UTC 806745 Hz user utility generation cost penalty for freq.
60.16 Isms (Concave) \ij(cc;ynve)()c\: %/ deviation
- - max, - 2.Ud) <pz>—5
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WECC frequency profile, 9/8/2011 Southwest Blackout J dynamics
Primary frequency control: balance power and stabilize frequency )
 Traditionally done on generator side [ . ];i

 Increased power intermittency (33% renewable in CA by 2020) ¢ (o)

requires faster and more spinning reserves, which have higher [ 1 E
cost and emission d,=|-U,"" (@)

Load-side participation in primary frequency control
A faster and cleaner supplement to generator-side
1 Decentralized control for scalable and flexible plug-n-play

 Challenge: Joint design and stability analysis with generator-
side (purpose of this work)

Equilibrium Analysis

 All closed-loop equilibria are economically efficient
0 Dual optimal @, = o, : Bus frequencies stabilized to the same
Proof approach: Equilibrium condition = KKT condition

Need secondary frequency control to restore bus frequencies
to the nominal value

1 Design decentralized primary frequency control which operates
jointly on generators and loads

 Stabilize bus frequencies and achieve economic efficiency at

closed-loop equilibrium Lyapunov function candidate: }J = E + ZVZ.
d Prove asymptotic stability with a relatively realistic generator

Stability analysis

: iegen
model and nonlinear AC power flows
d Show performance improvement with simulation where F = ZM Aw’ + Z j B, (smu —sin 6’;)du
) legen (i.j)eline L potential energy
iInetic energy
Power Network Model _
and V. =[Aa,,Ap.] P [Aa,,Ap.]" with P >0
genfgiﬂacf ; tgl I I Construct P, such that ' is a Lyapunov function, proving
’ T,s+1 | avave | 1S +1 D, asymptotic stability of any equilibrium satisfying mild conditions
: position . generation
Assume: governor turbine sower
|Vl| =1 per unit : .
Lossless lines Simulation Result
ij power flow v t N
L v, step-change |IEEE 39-bus test case, in Power System Toolbox (Chow et al.)
dj J power injection
=0 60
VCZ p] .
J load bus j generator bus ] ._ Show generator frequencies
C/l; . D 59.95[ generator-and-load control  When:
d’ 4= o .
i damping power + T ) . o - Red: only generators are
o Frequency deviation: H = Q. controllable freq' _dependent ‘? = \ghehn;r;tﬁt;rﬂ—;nly control controlled
T ! load power (uncontrollable) load -] - Black: 50% control
d Swing equation (generator-bus): £ 2989 capacity on generators and
: A 50% on loads
Mo, =r+p,—d;—d; - ZPU 9.8 Both cases: same total control
O Power balance (load-bus): JEN()  capacity
0= v +pi _di _di — 2}3] ’ ° h Time?s(sec) % # %
JeN(i)
d AC power flow: F, =5, Sln(@,- —(9]-) Load-side participation improves both steady-state and transient
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Grid Integration of Distributed Wind Generation: .
A Markovian and Interval Approach _
I Yaowen Yu', Student Member, IEEE, Peter B. Luh™, Fellow, IEEE, Eugene Litvinov", Fellow, IEEE, lso - new england

Tongxin Zheng", Senior Member, IEEE, Feng Zhao™, Member, IEEE, and Jinye Zhao™, Member, IEEE

*:. University of Connecticut, +: Independent System Operator New England
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Introduction Markovian and Interval Unit Commitment Numerical Testing Results
* This work develops a synergistic combination of Markovian and * Wind model considering transmission constraints « CPLEX 12.5.1.0 on a PC laptop with an Intel Core(TM) 17-
interval optimization for unit commitment problems with wind — With congestion, wind generation cannot be aggregated together 28200QM 2.30GHz CPU and 8GB memory
generation and transmission — Wind states for farms at different nodes may not be the same o [llustrative examples
* Motivation: Important to accommodate high penetration of wind * Nearby wind farms: Generation aggregated — Conservativeness — Consider 3 nodes, 2 wind farms, 2 units, and 1 hour
— DOE’s goal: 20% wind by 2030 * Wind farms far apart: States assumed independent o 1 600 Node 1 How big is transmission capacity
— Obama’s goal: 80% clean energy by 2035 — A Markov chain per node By @ {30} 0. 40%8_|f Fmax 900 required for feasible solutions?
. . . . . . L= — 1.3 =Y.
— In Spain, an unprecedented decrease in wind generation in Feb. 2012 is — With / wind nodes (Markov chains): N possible global states at time 7 R e
equivalent to the sudden down of 6 nuclear plants (4 is not unusual) *  Curse of dimensionality! s o ] Node - Pure Markovian 10
— Texas Emergency Electric Curtailment Plan is called on in Feb. 2008 Key idea: Markov + interval-based optimization X1,2 =0.004 I._@ Unit 3 (I;ure mtemlll 1286 CO?;ervatwe!
: : : , L ur approac
e Difficulties: — Markovian analysis to depend on local states; interval analysis to manage Node 2 [pin, pp |5, 10]
. o 1 max _
— Intermittent/uncertain nature of wind generation extreme combinations of non-local states o (ﬂ_H L- 80% i
»  Cannot be dispatched as conventional units * Local state: Wind generation state at the node under consideration (will be 2mt[15]2-20% E =
. . . extended into zonal state in future work) Unit 2 @— Py (=20 Pure Markovian 106 106
* Large uncertainty: Mean Absolute Error (normalized over capacity) of day- N . e . . [pzin, s ] =10, 35] —— | ~ -~
ahead wind power forecast: 15%~20% — Physical infrastructure supporting this idea: Wind-diesel system ure interva
' . . y . O h 10+2+1 2+2+1
— Complicated structures of transmission networks — How to combine two distinct approaches? Divide the generation . PP
. . (dispatch decision) of a conventional unit into two components — Complexity — Consider 6 wind farms at different buses, 10 states for each
— Computational complexity: NP hard problems : o ar :
* Markovian component depends on the local state n, e Solution fea81b111ty and modehng accuracy
Literature Review = | - — IEEE 30-bus system with 2 wind farms at 40% wind penetration
min M [ max y P
i (Opi - £|p;, OFP; , Q) x;(O)p; ", Vi, VL,V Y, (3) . . .
. . LIy WL * Free wind curtailment and load shedding at $5,000/MWh penalty
* Stochastic programming * [Interval component manages extreme combinations of non-local states *  Stopping MIP gap 0.1% and then 10,000 Monte Carlo runs
— Modeling wind generation — Representative scenarios — Constraints mnovatively formulated to guarantee solution feasibility for *  Our approach provides 5.23% lower simulation cost than pure interval
— To minimize the expected cost over scenarios all realizations without much complexity *  Qur approach is the most accurate, as it has the smallest APE*
— Difficult to choose an appropriate number of scenarios to balance — The effective use of local wind states alleviates the over-conservativeness
computational complexity and solution feasibility of interval optimization CPU time ” 53 {mins3s
* Robust optimization * System demand constraints Cost (k$) 248.66 280.67 253.40
_y . . . . Penalty (k 0 0.47 0.01
— Uncertainties modeled by an uncertainty set w/o probabilities — Based on interval optimization [!l: As long as min. and max. global states TR 20 46 77 652
— To optimize against the worst-case realization are feasible, all other realizations within them will be feasible E(Cost) (k$)  314.89 —— P
— Min Max conservative and computationally challenging Z_(p%nmi () + pl{ m; (t)) = Z(piL (?) —pZV minn, (f)),Vt (4) APE? 21.03% 6.61% 1.29%
: .. i A —_ 7 J STD(cost) (k$)  74.46 33.77 35.13
* Pure interval OptlIIllZElthIl [1] The minimum local The minimum combination of non-local states (where Penalty (k$) 40.82 0 0
] : : : iy, state at node i other nodes are at their minimum possible states) '
— Modeling wind generation — Closed intervals w/o probabilities y ) ) » . # Absolute percentage error (APE) = |optimization cost —
— Capturing the bounds of uncertain inputs in different types of constraints, %(p amaxn; (¥ Piag, (t)j B %(p ()= Pimaxn, (t))’w ®) simulation cost| / simulation cost X 100%)
and making decisions feasible for these bounds » Transmission capacity constraints: |Power flow| < fme - SRR
_ ints: i i i7ati S . . . o mputation 1c1en CPU time 41s
System Flemand constraints: As lpng 4s min. gnd max. Wmd realizations — Flexibility of local conventional generation used to shrink ranges of RHS omputationat CLeiency Optimi- P GAP 0,019,
are feasible, other realizations within them will be feasible — IEEE 118-bus system zation : e
. . - - Cost (k 911.48
 E.g., wind farm 1 outputs [10 MW, 40 MW], and wind farm 2 [20 MW, 50 Zafpi] O <™ —maXFaf (P,—VZ,Z. (1) + Pl‘%i - pf (f))J,W , V't (6) with 3 wind farms UC Cost (12;)( ) 1 83
MW]. Total wind generation = [30 MW, 90 MW]. l l ~_ Eicost) ($) 0 (; o7
* System demand = 200 MW. Net system demand = [110 MW, 170 MW] Markovian nodal injection =7, (/) Simula- T T
* [Ifa set of committed units with p,™" and p.™** can meet the 110 MW and * Ramp rate constraints (containing decision variables) o STD(cost) (k$) 24.64
170 MW, can it satisty possible demand at 140 MW? — Required for possible local states, local state transitions, p,{ n; (0, and P,{ w, (@)
. . . . . < fmax . . . . .
Transmission capacity constraints: [Power ﬂ‘?“f' —.fl | * The objective function: To approximate the expected cost w/o Conclusion
* A line flow 1s a linear combination of nodal injections weighted by much complexit . . .
generation shift factors (GSFs can be + or -) | p y o o * An immportant but difficult i1ssue
(=24 ( oL+ o (6= p( t)}v | Vi (1) — A weighted sum of extreme realizations and the expected realization + Hybrid Markovian and interval optimization to overcome the
l i : - :
« “Passively” capture bounds of uncertain inputs min YR w. O oM D+l DO +w. 4 OC| oM O+ vl complexity caused by transmission constraints
Zl Zl Zl neom; (DG Py O+ (8) |+ Wy, ag, (DG Py, (D) + Py (2) P y y
t=li=1|n;= . . .
Salp (1) < £ _max{z a;( oV (1)- piL(f)) J’W’W (2) ’ NL} (7) — Markovian analysis to depend on local state/reduce conservativeness
i i Pre-computed based on wE(DC; (p hE (t))+ 4i{1)3i+ % (05 Weights adding up to 1 — Interval analysis to ensure feasibility against realizations
interval arithmetic : : : : .
— Objective function: To minimize the cost of the expected realization * Anon-linear MIP formulation * Problem transtormed into a linear form based on monotonicity, and
— Linear and efficient via interval arithmetic: conservative — Non-linearity lies in max/min (negative flow direction) operations in (6) then solved efficiently by using branch-and-cut
* Opens a new and effective way to address stochastic problems w/o
. . o L . p y p
Previous Work - Markovian Optimization w/o Transmission [*! Solution Methodology — Branch-and-cut scenario analysis and avoid over-conservativeness
* Model aggregated wind generation — A Markov chain * Max/Min operations transformed into a linear form
— Given the present, the future 1s independent of the past — Idea: Analyze the monotonicity of Markovian nodal injections w.r.t. local References
states, then select indices of local states w/o optimization 1. Y. Wang, Q. Xia, and C. Kang, “Unit commitment with volatile node
— The MOVZOtOniCiW C0njecture: The local state with lower wind generathn injections by using mterval Optimization,” [EEE Transactions on Power
provides less or equal Markovian nodal injection at the optimum, 1.e., Systems, vol. 26, no. 3, pp. 1705-1713, 2011.
Pif\;f-—l(t) < Plf\lf (1),Vi,Vt,Vn;, ¥ (n; —1) € {n; —1| (Dnl-—l(t) > 0}. (8) 2. P. B. LU.h, Y Yu, B. Zhang, E LitYinOV, T Zheng, F. ZhaO, J. ZhaO, .and C.
l ’ Wang, “Grid integration of intermittent wind generation: A Markovian
* Generalized monotonicity analysis used to support this conjecture approach,” IEEE Trans. Smart Grid, vol.5, no.2, pp.732-741, March 2014.
max P (=P (1), minPY ()=PM. (1),Vi,vt. 9) 3. Y. Yu, P. B. Luh, E. Litvinov, T. Zheng, F. Zhao, and J. Zhao, “Grid
. 1,n; I,maxn; - L,ny I, minny . . . . . . . .
A scenario tree A Markov chain ’ ’ integration of distributed wind generation: A Markovian and interval
NT possible scenarios at one node T-N possible states at one node — Opverall problem converted linearly after approach,” submitted.
— Advantage: State at a time instant summarizes the information of all * Including (8) as constraints
previous instants in a probabilistic sense for reduced complexity * Substituting the min/max operations with corresponding states H h @ m k y@ M i
» Stochastic UC depends on states instead of scenarios « State transition matrices given and state probabilities pre-computed b




Designing Resilient
Electrical Distribution Grids
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Withstand

Develop new tools, methodologies, and algorithms to
enable the design of resilient power distribution
systems, using:
» asset hardening

Presidential Policy Directive - Critical Scenario Definition

Infrastructure Security and Resilience

We assume each scenario can be associated to a
subset of the lines of the power distribution system that
are inoperable:

“The ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from
disruptions. Resilience includes the ability to withstand

E 50

and recover from deliberate attacks, accidents, or > system design sl e elesimie T toompn-
naturally occurring threats or incidents.” > building new lines s L

P e—— . building switches £ - |

—tne e » building microgrid facilities i \

h N » building microgrid generation capacity 2 \

e = binary decisions, mixed-integer programming. —

urricane lvan '04

H
H 1 1 1 1

Hurricane Jeanne '04 0 5 10 15 20 25 30
Hurricaneisaac

Representative Distribution

Ice Accumulation (mm)

(d) Fragility

Nomenclature

Parameters

N set of nodes (buses).

£ set of edges (lines and transformers).

S set of disaster scenarios.

D, set of edges that are inoperable during s € S.

D’ set of hardened edges that are inoperable during disasters € S.
c¢;j costto build a line between bus i andj. O if line already exists.
k; cost to build a switch on a line between bus i andj.

(c) Damaged line

0.50 0.60 0.70

Duration
Source: Department of Energy, Office of Electrcity Delivery and Energy Reliability

A Simplified Model

0.30 0.40

Resilient Distribution Grid Design

min ) iy + > KT+ Y ity

: 1;; cost to harden a line between bus i andj.
Given a graph G = (V, E) where V Corresponds to node Ci;c cost of generation capacity on phase k at bus i. je& je& je& Minimize
: A ITHY : : «; cost to build a generation facility at node i. 7. . budget
based upgrades (i.e. building facilities and microgrid 0. e capatity batmeon bus ; and bus 1 on phase . + Z aiti + > ik 9
generation capacity) and E corresponds to line based P; set of phases for the line between bus i and bus j. N IEN KEP,
: o e : : : P; set of phases allowed to consume or inject at bus i. S.1.
upgrades (|.e. bU|Id|ng new lines, hardenlng lines and B; parameter for controlling maximum flow variation between the phases. x;: < Xjj Vij€ £E,s € S 1st stage:
A : : . d; demand for power at bus i for phase k. vy — " construction
buﬂdmg SWItCheS) we want to find: G, existing generation capacity on phase k at node i. 7',-; < Ty Vje€,s€S
min Budget(G’) Z;x maximum amount of generation capacity on phase k that can be built at node i. £.< t Viiec E,s €S
C the set of sets of nodes that includes a cycle. v v . ’
st. G CG X fraction of critical load that must be served. Zig S Zik Vi e N,k € P,s €S  2nd stage:
— fraction of all load that must be served. S < us ' assets in use
T. CG Vs € S | £ setofbuses whose load is critical. Z’ _<u1;4 . ‘v’\vi/lee ./\J/\f ’ksee 7‘3 TR,
N Variables ik > Wikt ) i :
T, € Trees(G) Vs € S | x; determines iflinei,jis built. (x*, 7,0,2,u’) € Q(s) vs s delvery

7;; determines if line i,j has a switch.

t; determines if line i,j is hardened. x,T,t,u € {0,1}

CriticalDemand(T;) > MinCriticalDemand Vs € S

: zix determines the capacity for generation on phase k at node i.
TomlDemand(Ts) Z MinTotalDemand Vs €S u; determines the generation capacity built at node i.
x}. determines if line i,j is used during disaster s. " . . .
: 1 Tg- determines if switch i, is used during disaster s. Set Of FeaSIble DIStrlbUtIOn NetWOrkS
AlgOrlthm 1: Greedy £ determines if line i,j is hardened during disaster s.
sz determines the capacity for generation on phase k at bus i during disaster s.
u; indicates if the generation capacity is used at node i during disaster s. O(s) = {&', 7, £, 2, u’ :
input. A set of disasters §- g, generation produced for bus i on phase k during disaster s. ST AXLT 5P B
; ; I, load delivered at bus i on phase k during disaster s. — X oQije < fiig < X5 1 Qiik Vij€ £,k € Pj  3.phase real
1 for S & S do y; determines if the jth load at bus i is served or not during disaster s. o4 x . < x Vij € € flow
2 | 55 Solve (P’ : /. flow between bus i and bus j on phase k during disaster s. ,0 g1 — i -
tU < Solve(P'(s)); fi determines if at least one edge between i and is used during disaster s. (T; — 1)0iix Sf,;-k <(1- 7',;-)Qijk Vij € £,k € Py
* — s - T determines if at least one switch between i andj is used during disaster s. ’
3o (x) Tax{a.(x)|‘v’:s* € S}, vx € A il xf.o determines if there exists flow on line i,j fromj to i, during disaster s. Zfij,k Zfij,k Modeled as
4 Update o*(x;) with switches to preserve feasibility; xgj’.jl determines if there exists flow on line i,j from i to j, during disaster s. KEPy o kP - . e ek
5 return o* Pl =Jiik = [py VG EEKEP i flow with
(l_ﬁij (1+Bl]) hase
» Load .o P
. : . 1 41.77- o Goeies;ators 41.85/ R {0 ifij € D' Vij € D, variation
Algorithm 2: Scenario Based Decomposition R 5 —Existnglines @y g i~ %=1 else
. r AN T . nl
: f L, = 'd; Vi € N,k € P;  Hardened
: 41.75 _ Y Qi.k ardene
INPUL: A set of disasters S and let §’ = Sj; .75 ol ; 5 ’ " nes can st
1whileS \ §' # 0do R I 47 " Generators 0 < g, <z + Gix Vi€ N,k € P;  bedamaged
2  o* + Solve P(S’) exactly (SBD) or with VNS (SBVNDS); 41.73| 41680 :E:ivsvtiﬂ%gsines g — L, — Z fir= Vie N,k e P,
3 I N <S}9 $2..-85\57)8 € S\ 8" : I(P'(s;,0%)) > I(P'(5i11,0%)); 7268  -7266  -72.64 728 727 726 725 s jEN . Distribution
a IfI(P'(1(0),0%)) < 0then 0S 2 < Zigs Vie Nk € P petwork =
5 | return o*; - (&) Urban (b) Rural S - < |V —1 vCec  tee
6 else Figure . Each problem contains three copies of the IEEE 34 system to mimic ije&(C)
) , _ situations where there are three normally independent distribution circuits that could 7-5. < xls,j Vij € € -
7 LS N I(O)’ support each other during extreme events. These problems include 100 scenarios, s s Mlnlmum
8  return o 109 nodes, 118 possible generators, 204 loads, and 148 edges, resulting in Z li,k > A Z di service
— problems with > 90k binary variables. The cost of single and three phase i€LkEP; i€LkEP; requirement
underground lines is between $40k and $1500k per mile and we adopt the cost of Z L, >~ Z d; as resilience
. _ . : - : : - , w0 ’ criteria
Algorlthm 3: Variable NelgthrhOOd Searchl $100k per mile and $500k per mile, respectively. The cost of single and three phase IEN\LKEP, iEN\LkEP;

switches is estimated to be $10k and $15k, respectively. Finally, the installed cost of

xs?ys7 TS? us7 ts E {09 1}}
natural gas-fired CHP in a microgrid is estimated to be $1500k per MW.

input: o’, MAXTIME, MAXRESTARTS and MAXITERATIONS;

1 Let ol < Solve(PLY), o* < o', restart < false; Rural, Hardened lines are not damageable (b)

Urban, Hardened lines are not damageable (a)

: - CPLEX Greedy SBD SBVNDS CPLEX Greedy SBD SBVNDS
2wWhiler < MAXTIME andi < MAXRESTARTS CPU [ OBJ OBJ  CPU | OBJ CPU| OBJ CPU | OBJ ~ OBJ  CPU | OBJ CPU OBJ
dO 109% 19984.7322.9 1044.5 | 465.8 [322.9(/289.9|353.7 10% 33083.5/2337.0 3274.8 |1837.9/2337.0/503.3/2337.0
3« 0; 25% | 166352 [635.4| 1643.5 /18028.3/635.4/811.4 635.4 25% 132170.82390.31 3427.6 | 571.0 12390.3/457.8 2390.3
4 | X : |lo* LP 0l 50% TO X 12021.212840.7/647.71791.3|647.7 50% 20840.3 2397.6 34499 471.2 2397.6 421.2 2397.6
n<|x € &:|ot(x) - (x)| #0[; 75%  TO | X 18742 991.1 652.1 692.5 652.1 75% 15556.1 24004 3452.7 337.5 24004 299.8 24004
5 | J <7l'19 T .. -7T|J|> c X: 1009% TO X 1934.4 | 7/12.7 654.1662.5 654.1 100% | 17225.9 1 2400.6| 2780.6 | 385.8 [2400.6|346.9|2400.6
jo* (7)) — o (m)| < |o*(miy1) — o™ (miy)|; | . | )
6 ifrestart then Urban, Hardened lines are damaged at a 155 rate (C) Rural, Hardened lines are damaged at a 15 rate (d)
] ) _ CPLEX Greedy SBD SBVNDS CPLEX Greedy SBD SBVNDS
7 i1+ 1 CPU | OBJd | OBJ CPU OBJ CPU OBJ CPU oBJ oBJ CPU | OBJ CPU OoBJ
8 step <— %", k = |X| — step; 10% 1159166 /445.8 1061.7 | 2232.9 | 445.8 2721.3| 476.5 10% [ 77947.9 2363.0| 3375.4 [759.0/2363.0/ 576.9 | 2363.0
9 | shuffie()) 25% ~TO | X 14419 14299.2 662.9 2994.7 701.5 25% TO | X 82386 TO | X | 9194 67443
I 50% TO X 1571.2 | 2848.7 | 646.0 |[191/7.7| 760.2 50% TO X 12336.0] TO 19288.9| 4361.8 | 7121.0
10  else 75% TO X 1/87.3/16040.6 68/.6 1481.4| 68/.6 75% TO X 230995 TO X 23142.6 11500.0
11 tstep — %, k = |X| — step; 100%| TO X 127448 124270.3/1320.5/2157.5/1330.5 100% TO X 16600.7| TO X 5879.5 | 9/9/.3
12 \!Vhl'& < MAXTIME and Urban, Hardened lines are damaged at a % rate (e) Rural, Hardened lines are damaged at a 1—10 rate (f)
j < MAXITERATIONS do CPLEX | Greedy SBD SBVNDS CPLEX | Greedy SBD SBVNDS
13 | o7 « Solve(P(c*,J(1,. .. ,k)); CPUOBJ OBJ | CPU | OBJ | CPU | OBJ CPU[OBJ| OBJ' | CPU | OBJ | CPU | OBJ
f ’ % h 10%  TO | X 859.1 | 5265.1 | 460.8 | 2505.7 | 594 .1 10% | TO | X | 7503.3 [141718.0) 4325.9 | 7756.8 | 4424.8
14 iff(o’) < f(o*)then 25% TO X | 17422 12530.3 961.2  2843.2  961.2 25% TO X 18021.3 TO X | 219935 | 7371.9
15 o* — o’; 50% | TO | X | 3133.8 [34822.71417.2| 3363.5 |1555.2 50% | TO | X 128865.0 TO 12017.7| 74729.0 12031.2
16 i< 0 75% | TO | X | 3472.0 TO X /486.5 | 1894.2 75% | TO | X 131887.0 T0O 13522.2/10/7165.0 13500.8
’ _ 100% | TO | X [10479.1 TO X 32289.8 /959.4 100% | TO | X [32901.9 T0O 16794.4114354.0 16//8.2
17 restart < false;
18 Jj < MAXITERATIONS; 50 _— T
19 else ® 40" O o o) : s O e
. . ; O O @ © | m L 9 | | Q@
20 ji+ L 5. | , 2 I S . MICROGHID *S 5" MICROGRID | / I
21 | k=k— "2 > - S 2 Ay £ 5 - - £
. ) = HARDENED =/ | w5 - S = | | =
22 ifj > MAXITERATIONS then S AR B 1 U AT
23 Lrestart < true; £ 0 LINES = | ‘E:’ = | > ‘E:’ £ HARDEN ‘E:’
‘a * - | VaWa - /XV/\\/ - LINES = LINES
24 return o % ¥ 0.4 06 0.8 1 0_1/\0.2 e 0/\\ s e o AJ\ |

0.3 0.4 . 05 06 0.7 0.8
Per Mile Damage

(f) Rural - 1/10 Rate

0.2 03 04 . 0.5 0.‘6 0.‘7 08
Per Mile Damage

(e) Rural - 1/100 Rate

3 0.4 . 0.5 6 07
Per Mile Damage

(b) Urban - 1/10 Rate

Per Mile Damage

lYamangil, Bent, Backhaus (2015), Resilient Upgrade of Electrical Distribution
(a) Urban - 1/100 Rate

Grids, in proceedings of AAAI-15, AAAI press.

http://public.lanl.gov/rbent/

vamangil@rutgers.edu



Il Lyapunov Functions Family Approach
Bl toTransient Stability Assessment

Thanh Long Vu and Konstantin Turitsyn
Massachusetts Institute of Technology

MOTIVATIONS

1. Emerging technologies are changing
the way power grids operate

2. The existing planning and operation
computational techniques have to be
reassessed

3. Variations in the grids (e.g. mechani-
cal torques, topology) result in differ-
ent operating conditions

PROBLEMS

We consider two stability assessment prob-
lems of power grids:

Transient stability: Estimate the region of
attraction of the stable equilibrium point 0* =
0%,...,0%.0,...,01%, ie. the set of initial condi-
tions {64(0), 0, (0)}72_, starting from which the
system (1)-(2) converges to 0*.

Robust transient stability: Certify the sta-
bility of the system (1)-(2), where the mechanical
torques Py are varying such that the stable equi-
librium point 0* is in the polytope © defined by
the inequalities |0 .| < Ag;.

CONTRIBUTIONS

. Introduced the LFF approach to cer-
tity the transient stability of structure-
preserving multimachine power grids

. This approach is applicable to lossy
power grids, which is impossible by
the standard energy methods

. Presented optimization and LMI-based
techniques to explicitly construct the
stability certificates and to adapt the
Lyapunov functions to initial states

. Posed a new control problem of sta-
bility assessment for systems with un-
known equilibria

. Applied the LFF approach to uncertain
power grids with unknown equilib-
rium points and provided robust sta-
bility certificates

FUTURE DIRECTIONS

1. Extend the LFF stability assessment ap-
proach to more realistic models of genera-
tors, loads, and transmission network:

e Structure-preserving models with reac-
tive powers: extending the nonlinear-
ity F

e Higher-order models of generators

with voltage dynamics, and higher-
order loads

2. Design optimization algorithms to im-
prove computational etficiency

STRUCTURE PRESERVING DYNAMICAL SWING EQUATIONS

JEN

JEN

LFF APPROACH

Nonlinearity separation and bounding
Tt = Ax — BF(Cx) (4)

L — [517..-7577’2/75.17'"75m?5m+17'°.76n]T
F(Cx) = [(sindg; — sin 5;:;]')]%;@,]'}65

A

3
2 5j — O
1

Sin d;j — sin 0y,

| | | | |
(o)} (9] g w N =

-5 -4 -3 -2 -1 0 1 2 3
FIG. 1: Linear bounding of the nonlinear couplings
Lyapunov Functions Family

1
2

where (), K, H are solutions of the LMIs:

AT A
P LG

with R = QB — CTH — (KCA)T.
Then, V(z) < 0 for any state = stays within
the polytope P := {x : |0k, + 05| < 7}

Adaptation to Initial States

Let € be a positive constant.

Step 1: Find Q), KM H(Y) by solving (5).
Step n: Find QU), K™ H(™ by solving the
following LMIs:

- ATQM) L QA4 RM
(R(NT _opgm | SV
VD () < Vi — e

Once infeasible, € is replaced by €/2.
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Consider the structure-preserving model of power grids described by the swing equations:

(Q) mk5k —+ dk5k — Pmk — VkQGk — Z VijBkjSin(5k — 5]'),
JEN

(,C) dk(sk — —Pc?k — Z Vk‘/jBkjSiIl(5k — 5]'),

V(z) =-a"Qu — )  Kp j(cos b; + 6 sin 6y

k=1,....m (1)

Ek=m+1,...,.n (2)

The operating condition is characterized by the angle ditferences o5, = d;; — 0} satistying:

Z Vk‘/}Bkj Sin5zj — Pk,k' — 1, cee sy Nl (3)

RESULTS

Let Vinin := min V(z). Then, the set
reoPout

R ={x € P : V(zr) < V! is invariant,
and an estimate of stability region of the SEP o0*.
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Security Constrained Optimal Power Flow with
Distributionally Robust Chance Constraints

Line Roald*, Frauke Oldewurtel*, Bart Van Parys®, Goran Andersson*
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PROBLEM: Uncertain power injections - uncertain power flows GOAL: Keep the system operation N-1 secure despite uncertainty

N

Uncertainty from 001 |~ probable realization Soh N Use chance constrained
- Renewables sor : : : optimal power flow to keep

- Market liberalization o Low probability the probability of line over-
of overload

(intra-day trading) 0.005 0.02 : load below acceptable values
Line

0 Forecast .
150 -100 -50 0 50 100 150 200 Error 0 240 Power
Flow

1. CHANCE CONSTRAINED OPTIMAL POWER FLOW . ANALYTIC REFORMULATION OF THE CHANCE CONSTRAINTS
* Chance constraints reflect the probability of constraint violation Influence of each uncertainty source is traceable
 Optimal power flow formulation based on DC power flow Deterministic solution (not dependent on the choice of samples)
e If a violation occurs, additional remedial actions are required from Only applicable when D' is constant (linear program)
the system operator in real-time or linearly in the decision variables (SOCP)

CHANCE CONSTRAINT FOR POST-CONTINGENCY LINE FLOW REFORMULATED CONSTRAINT

Scheduled power flow i
g Change due_ to De5|red Deterministic constraint Stochastic tightening of constraint
+ change due to outage  RES fluctuations confidence level A :

N : M ‘v . i max\ l—l i y1/2 J
P(A'P,; + D'6P,,; < PI™) > 1—¢ A'Pp,; < PR™ — [1(1 — ¢)||D'EV?||, — D'n

inj —

Scheduled in-feeds 6P;,; Uncertain in-feeds v

System topology U Mean vector

D! Influence of RES fluctuations Covariance matrix 3. f/71(1 — £) DEPENDS ON (UNKNOWN) DISTRIBUTION OF OPy;

P Line flow limit £ Accepted violation prob.

- More information about - Exact reformulation if distribution

CASE STUDY: IEEE RTS 96 WITH UNCERTAIN IN-FEEDS . the distribution yields is known and elliptical:
less tightening

Power Systems Laboratory

== normal distribution

300 t distribution

Two uncertain in-feeds (bus 8, 15)
U, X based on samples of
historical data from APG
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©
(b)
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100 g Distributionally robust constraints

if distribution is partially known:

Accepted violation probability: Chebyshev (known u & )
c=0.075 Unimodal with known y & X

300 i i 5 " | | | . .
Different assumptions on 100 0.2 | 04 - = Symmetric, unimodal
probability distribution of 5Pinj Forecast error bus 8 [MW] Confidence level 1 — ¢ with known u & X

Not normally distributed! .
100 p o '."r'*.: A '

Value of f~1(1 — &)

-200 F

Forecast error bus 15

CASE STUDY RESULTS
POWER FLOW ON LINE 15 - 16 COST AND VIOLATIONS

Active constraint: Power flow on line 15-16 Objective function cost More information
112 = lower cost

110 -+ :
108}
106
104+
102

after outage of line 15 - 21

Cumulative distribution function:

Relative cost
[% of deterministic]

Limit

Normal Chebyshev Unimodal
Uncertainty assumption

== Deterministic Empirical vs Guaranteed Violation probabilities

== Normal

W
o

—6— Max. Empirical

-*© -+ Mean Empirical
—6— Normal

—6— Chebyshev
Unimodal

== Chebyshev

Unimodal

Cumulative Distribution Function

[HEY
o

Violation probability [%]
N
o

Guaranteed vs Empirical

=

Line Flow [MW] Normal Chebshev Unimodal
Uncertainty assumption

Normal distribution is a «good guess», Chebyshev provides probabilistic Unimodal provides probabilistic
but provides no probabilistic guarantees guarantees, but is very conservative guarantees, and is less conservative

Poster presenter: Line Roald Contact: roald@eeh.ee.ethz.ch



Cascading Failure Risk Estimation and Decentralized Mitigation

The
UNIVERSITY Pooya Rezaei, Paul D.H. Hines and Margaret J. Eppstein
of VERMONT College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT
Abstract Risk as a function of load Decentralized Overload Mitigation Problem
400 ————— 0.2 — " ———— Minimize ~-1"APpq + AT fover 0
We propose a new method to estimate the risk of large “ B 07505155 N . 10750157 aPpaabe.a -
cascading blackouts triggered by multiple contingencies, 300| 1S%<BO20% | q.15] s subject to  Af =X, A" A0

Rick i _fmax,ﬂ — fover,Q < fO,Q + Afﬂ < fmax,ﬂ =+ fover,Q
1SK 1S 0.1t B
decreasing> BAO =Aq; APg - Ap APp

1 0.05¢ | _(PGO,Q _ PG,min,Q) < A]-:)G,Q < 0
‘ —Ppon < APpo <0
Q I I APG,QC — O

using a search algorithm called “Random Chemistry”. Risk
estimates converge at least two orders of magnitude faster
than a conventional Monte-Carlo simulation for two test
systems (e.g., Fig. 1). Using this method, we can quickly

Risk (Expected blackout size, W)
S
S

estimate hoyv. risk changes With load level (Eig. 2.) and find (. o
the most critical components in a power grid (Fig. 3). We Load Jevel (percent) Load level (percent) APp e =0
further propose a decentralized overload mitigation Figure 2. Cascading failure risk vs. load level for RTS-96: (a) fover,0 > 0
approach to stop a potential cascade (Fig. 4). SCDCOPF, and (b) Proportional dispatch. The proportional Q): node/line local neighborhood, €¢: nodes outside €
dispatch 1s more expensive, but has a much lower risk, which AP/AP: variation in load/generation
Estimating Cascading Failure Risk shows a trade-oft between cost of dispatch and risk. f .. slack variable to define a soft constraint for overload

B: bus susceptance matrix

Sensitivity of Risk to individual branch outage

After each agent solves their own optimization problem with

A standard measure of risk due to a random disturbance:

probabilities the optimization control variables to exist only in the local
A 1 10" = o — neighborhood, i1t implements the load/generation reduction
| Three most : S :
\ _ |
te‘cﬂ\ Rmc(x)=— E S(c,x) < crition] Tinos on.1y on 1ts own when ne.g(?tlat@n 1s off, or the whole local
won ‘Q . N0 l neighborhood when negotiation 1s on.
cEQ, > - |
E _2: | 100 | | Negotiate: olff | | 100 — Negotiate: on
2107 I @ (b)
R(x)= ) Pr(c)S(c,x) 5. Y w0 w0 Similar t
VceeQ £ 10 | ’ = ol | | = ol optimal
RaIN\ A _4: : % | | %
0 10 - - | ' | ' 2 40t | _ : 2 40}
n Che,, . Rrcx(x) = 107 10 10 10° 10 o S | -
IIIIStry / \ Sensitivity(z, kW) 0 Q | - - © ol ==
m, E S( d x) | | P Figure 3. Complementary Cumulative Distribution Function of L | . N
O ’ i sensitivities (one circle per branch) - 00 e 10 O
RC k| d€EQpc, \icd ) A\ : \
a R RC k X m aPr d Negotiate: off Negotiate: on
( )= K S(d, x ( ) 1t It @ ©---6---0--©--0
700 | | | | | 0 ‘Q ‘ ’ 0 1140 / 1140
= j Polish System — RC:5=5% £ RO 4k SR o 0.8 2 pos :
4 601' ----- MC: S = 5% _506 1120 5 506_ S 1120 2
SR, —RC: S = 40% Disadvantages of Centralized Control H : :
"7 E'&'ﬂ, AT e é 0.4+t 100 g é 0.4 1100 g
5 R A e MC: S = 40% s v 2 %
@) g \ W YN P N e TP A GO, S Seeemevasngas A Y . . = ) o 5)
B i A central controller has certain flaws when 1t comes to 202 180 2 802 180 2
S | Te - . . . . .
ro 60T T e implementation, which makes 1t impractical: ol o ol N
= e . - - 210 2-10 3-10 4-10 5- “10 2210 3-10 4-10 5- '
g ___28;3;\,“' . - * It needs a huge communication infrastructure to collect 0 e T O e
é 0 200,000 400,000 and submit information to the whole network Figure 4. Statistical performance of the decentralized controller
. s e, sont ‘.,’.'..'u-.."’"'g,'.‘.. s . . . . . . : :
SIS N . e It is more vulnerable to failures. One failure in a part of after applying all n-2 contingencies to a modified IEEE 30-bus
,M i , -~ »4® 17 vkt T ‘ e ALTY SR T oot T L 35 matongueniny ¥ 3 7 ‘ . . <o . R
_é; the system can collapse the control scheme. cEse. Th}:: box dplot 1nq1cates totglhblackou; stes, .vx;lhere the; l.me
- : - the median val a 1thout, an 1th negotiation
| | * There are multiple control regions 1n an actual large- SHOWS HIE e value (a) without, (b) w COUALo

0 02 ()[4 O|.6 O|.8 1 1[2 1[4 1|.6 18 o) capability; bottom panels show empirical probability of

scale power grid, with operators each being in charge of

Number of calls to the cascading failure simulator % 10’ hoi eliminating overloads (dashed line and circle markers) and the
. . . . . . t CI.I’ O.WH a.rea. . . average time (solid line and asterisk markers) that 1t takes to solve
Figure 1. Cascading failure risk: estimates using the Random * Variation in load/generation on a bus typically has the problem (c) without, and (d) with negotiation. The case ID p-q

Chemistry and Monte-Carlo methods 1n the Polish grid with 2896
branches.

localized eftects and does not generally affect the whole represents the local neighborhood g17e D and extended
system. neighborhood size q.




Constrained Mean Field Control for Large Populations of Plug-in Electric
Vehicles

Francesca Parise, Sergio Grammatico, Marcello Colombino and John Lygeros
Automatic Control Laboratory ETH ZUrich, Switzerland

Introduction

Vehicles obtaining some or all of their energy from the electricity grid, as Plug-
in (hybrid) Electric Vehicles (PEVs), may achieve significant market penetration
over the next few years. This raises the question of how to optimally fulfill the
corresponding energy requirement, by regulating the collective charging profile
of large populations of PEVs, while guaranteeing the interest and the privacy of
the users.

Here we address this task using a mean field game theoretical approach [1,2].
We consider PEVs as heterogeneous agents, with different charging constraints
(plug-in times and deadlines), that minimize their own charging cost and are
weakly coupled via a common electricity price.

Problem Formulation

N
., unT] be the
vector of the energy required by vehicle n € {1,..., N}, which must belong to
the personalized constraint set

Up = {un cR’ | ZUn,t:’Yna 0 < up: < Mn,t}a
t

Consider a charging horizon of T time steps. Let u, = [un1, ..

and p (ui*®):=a(u"® + dr), a>0, be an affine price function that depends on the
total energy demand at time t. Each agent minimizes its charging cost by solving

u; ({uitn) = argmin 3~ p (6" uns (1)
t

st. u,el,
which leads to the aggregate behavior

1 N
avg _
udv9 — N;u”'

As shown in Figure 1 (left) if uncontrolled the total energy demand may present

undesirable peaks.
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Figure 1 : Total energy demand divided by the number of vehicles N, according to different charging policies. The
black line is the normalized base load demand d;.

Nash Equilibrium

A set of strategies {u,}" . is stable if no agent has interest in deviating from its
strategy given what the others are doing. Formally it is an e-Nash equilibrium if

J(@al{U,) < J(upl{O}Y,) +e Vu, €U,

It was proven in [3], that the Nash equilibrium of problem (1), in the absence of
upper bounds, is valley-filling, see Figure 1 (right). Hence the Nash equilibrium
Is both valley-filling and socially fair.

To steer the population to such desirable equilibrium we consider a quadratic
relaxation of the original problem using the modified cost

Js(U™9) = ZP (u®) Unt + 0(Une — U ®)?
t

where the parameter o > 0 has to be as small as possible. Note that, in the limit
of infinite population size, the average u®'? can be though of as an exogenous
signal z that must satisfy

Z fixed point of the aggregation mapping A(+)
)

{us(2)}Y . is an e-Nash equilibrium, with e ~ O(1/N)
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A Mean Field Control Algorithm

In order to find the fixed point of the aggregation mapping we consider an itera-
tive scheme between

~ a central operator that broadcasts at each iteration k the price signal p(zy),

2= Pp_1(Zk-1, A(Zk-1));
- the agents that respond by computing u’ (z);
» an aggregator that computes A (zx) and send it back to the central operator.

N

(2) }

ol = in .J.
{un (zx) == arg min J

n=1

The iteration-dependent feedback mapping ®«(-, -) should be selected such that
the algorithm converges to a fixed point of the aggregation mapping. To this end,
we consider two fixed point iteration mappings

Picard-Banach [3]:
Mann [4]:

o B(zy, A(zk)) = A(zk)
(DI,\(/I(Z/(, A(Zk)) = (1 — Ckk)Zk + Ozk.A(Zk), Q) X 1//(

The following convergence guarantees hold

(DP_B (bM
0> aj2 v v
o>0 v

The use of the Mann iteration instead of the Picard-Banach allows one to find
the fixed point for arbitrarily small values of ¢, hence allowing to recover the
Nash-equilibrium of the original Problem (1), [4]
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Figure 2 : Normalized total energy consumption relative to the Nash-equilibrium for different values of 6.

Generalization

The above results can be generalized to the broader class of quadratic, convex
constrained, mean field games where each agent computes

X;(z) == argmin x'Qx + (x — z)' A(x—2)+2(Cz+c¢) x
s.t. Xe A,

In [5], it is proven that, under different conditions on the matrices Q, A, C, dif-
ferent feedback mappings ®(z,.4(z)) can be used to steer the population to an
e-Nash equilibrium, with ¢ ~ O(1/N).
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Investigating the Impact of Communication Loss on Power Grid Stability

I I I mEEm Massachusetts during a Large Disturbance

I I Institute of

Technology Marzieh Parandehgheibi, Konstantin Turitsyn and Eytan Modiano

(marp,turitsyn,modiano@mit.edu)

Introduction Role of Communication Network Simulation Results

In order to avoid large cascading failures, a communication network is Information collected by Communication Network * Metric: Yield (Percentage of served load)

required for online monitoring & control V. (1) * Pre-defined Strategy: The state of power nodes after disconnection from
the communication network

Power grid and communication network make a strong interdependency
Literature suggests that interdependency makes networks more vulnerable 1) P, ..: Keep the generators and loads at their last state

A proper analysis of interdependent networks should account for the w,(t) |Frequency of Power at node k 2) P,.,.: Trip the generators and shed the loads
availability of control schemes applied by the communication networks fi;(t) | Flow in power line (k,j)

1

Magnitude of voltage at node k

0.(t) |Phase of voltage at node k

Observations:

1

—e— No Control - Single Power Grid —6— No Control - Single Power Grid

—»— No Control - Interdependent Power Grid —b— Control - Interdependent Power Grid Control Actions >» Communication loss makes network more vulnerable (smaller yield)

o
Q0
o
00

Impact of Communication Loss on Power Grid

Centralized Control Decentralized control-protection | _ Disturbance: 10 power nodes failed
Requires Communication Performs locally- No Need to Communication

o
o
O
o

6% load shedding due to power
disturbance

17% load shedding due to
communication loss

oo
w
L)

|

Ramping down generators |5% droop control at generators

o
N
<
N

Average Yield
Average Yield

©
W
|

ntelligent load shedding Over-frequency generator tripping (protection)

o
o]
|

o
N
o
N
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ntelligent line tripping Under-frequency load shedding (protection)

OD\D R e S e n

8
L

0 0.2 0.4 0.6 . "0 0.2 04 06 .~ 08 Overloaded line tripping (protection)
Percentage of Initial Node Removals Percentage of Initial Node Removals

Interdependency increases the robustness of power grid Full Control Model

o P L D
0 @

N B

I

Yield - Percentage of Served Load
©
o

o

~

o
I

Question: 05 10 15 20 25 30 35 40

A point-wise failure model seems too simplistic. min ZPL number of Unconfroliable power nodes

How does the loss of communication network impact the power grid? = | » Impact is a function of several parameters such as:

1) size of uncontrollable area: yield decreases monotonically

2) size of uncontrollable clusters (topology of uncontrollable area)

Power Grid 3) Size of Power Failure: yield decreases monotonically
RegiOn 1 E ]Fl] - E ][ji — PLZ \V/l & VL Impact of Communication Loss on Power Grid Impact of Size of Power Failure on Power Grid's Performance
jeE i '

Disturbance: 10 power nodes failed For different sizes of Communication Failures
Tie Lines

Ideal Model of Communication Network Responsible for Wide-Area Control ij — Zf] =PG -a(w-w) Viel

jek

jek

—0— Cluster=1 : —&— NoCommpFailure

. —6— Cluster=2 —8— ClusteredComm=10
f o — f = O \v/ l € V —©— Cluster=5 —©— ClusteredComm=20
ij Ji B 93k —6— Cluster=10| —— ClusteredComm=30
jeE jeE —©6— ClusteredComm=40
:8: :8: i

-M(1-z )< X f —40 <M(1l-z ) V(ij)ek
2z fm<f<zf" V(ij ek
: - -M(lz )<w —w <M(l-z ) V(ij)e E
‘ S o Sa) =07 V.l =V o 5 10 15 20 25 30 35 40 08T oo o ¢ 1[,
PG™ < PG £ PG™ VieV SERSTEEETEORIEIEnS BRREHAoRss Size Power Failure
‘@ e e , =10 :

- PL" < PL <PL™ Viel » Nodes both inside and outside the uncontrollable area could be affected

i

o
©
N}
I
o
%)

Yield (Percentage of Served Load)
>
N
@)

Yield (Percentage of Served Load)

Region 1 Inter-Region Region 2 z €{01} V(ij)eE > P... is not always better than P,
: 1) For the same size of uncontrollable area, chance of Pzero>Pinit is higher in

Communication Network Partial ContrOI Model clustered areas

T £C ication Eail 2) For the same size of clusters, chance of Pzero>Pinit is higher for smaller sizes of
ypes of Communication Failures: Power Grid Uncontrollable P Controllable Areas: Full control uncontrollable areas

i . " Area
»Intra Regfon s Uncontrollable areas:
> Inter-Region ' \ 1. Switch the Generators and

: ‘ -5
Power Loads to a predefined strategy /‘\ O _‘\

Intra-Region Failures: _ Failure % for CommLossMode:
1) Uncontrollable area and power , 2. Allow Trip border lines
failures are disjoint: . :
* Complete Information about _ Objective: Stabilize Grid S

the I.ast state of Grid Communication a) Minimize Load Shedding Pinit Strategy : Yield=0 Pinit Strategy : Yield=15
* Partial Control —  Failure ) while keeping the nodes in Pzero Strategy: Yield=10 Pzero Strategy: Yield=10
T i ' the uncontrollable area at a References

2) Uncontrollable area and power R { predefined strategy
failures overlap: i
P - b) If keeping an uncontrollable Nature 464.7291 (2010): 1025-1028.

’ Incomplete Information about _ area connected to the rest of Parandehgheibi, Marzieh, Eytan Modiano, and David Hay. "Mitigating cascading failures in

the state of Grid Communication Failure grid is not feasible or costs a interdependent power grids and communication networks."Smart Grid Communications

e Partial Control Region 1 ™ Power Eailure lot: Trip all border lines (SmartGridComm), 2014 IEEE International Conference on. |EEE, 2014.
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Short Term Solar Forecasting Using Sky Imagery and
Its Applications in Control and Optimization for a Smart Grid

Andu Nguyen (andunguyen(@ucsd.edu) and Jan Kleissl (jkleissl@ucsd.edu) at UC San Diego’s SRAF Lab

Short-term Solar Forecasting

(Goal: Forecast solar generation in short time scale (0-30 minutes) with high temporal resolution to build
smart controls for storage systems (charge/ discharge), power inverters, voltage regulators, smart switching

devices, etc. This helps to save generation and maintenance cost while keeping power quality high.

~

Hardware

High Resolution
Camera with :
Fisheyelens | "= 5

fl

Environment
sensor and
control board

Computer
Dual core 1.8 Ghz
Intel Atom, 4GB

RAM

USI Deployed in Redlands, CA

Idea

Algorithm: The fundamental idea is to detect cloud and predict its location in the future to determine

whether and when 1t will cover the PV panels. The forecasting process includes several steps:

1. Cloud Detection: Using image processing to distinguish cloud from clear sky by RBR value.
Cloud projection into an earth coordinate system.
Cloud speed and direction calculation: Using image segment correlation.

Modeling cloud motion forward in time using the cloud detection and the motion vectors.
Projection of cloud shadows on the ground for irradiance forecasting of solar panels.
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Sample of a forecast process done at UCSD. Green line 1s
5-minute forecast and black line 1s measured data.
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USI forecast kt overlaid on DEMROES calculated kt for Nov-10-2012 23:59:30 (UTC)
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USI forecast error metrics vs. forecast horizon
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Issues with High PV Penetration

~

High PV penetration leads to various problems observed in both distribution and transmission systems:

* High frequency -> Impact frequency control and generators’ synchronization -> power outage.
* Over-voltages -> damage electronic devices (light bulbs, computers, monitors, etc.)

* Voltage fluctuations -> shorten lifetime of voltage regulators, transformers, protection devices, etc.)
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Peak load shaving control with Short-term

/
B

\system lifetime (6 years extra) and its lifetime profit (360% increase on a 31 kWh storage system)./

-

Solar Forecast for Storage System
Control with Sky Imager Solar Forecast was developed for a 31kW PV tied to a 31 kWh Li-1on
at John Hopkins parking structure at UCSD, CA. The solar forecasts was used to optimize the
charge/discharge cycling for peak load shaving and battery life longevity. The strategy for peak
load shaving 1s “Time-of-use Energy Cost Management Plus Demand Charge Management.”
L ! 1 T W ~ T D T
130} — Load " |
Load - PV
120 Load - PV+ Storage Peak l.C ad . 0.8}
10 Sha‘vnﬁg |
2 100] | = oo
. N J O
% 90k A \ WA oal
80| .
70 1 02
60 .
00:00 06:00 12:00 18:00 00:00  00:00 06:00 12:00 18:00 00:00
Nov 7, 2012 Nov 7, 2012
Control operation for Storage System at John Hopkins Building on Nov 7, 2012
Optimization with PV Off-Peak/On-Peak without PV
Power Output and Load Power Output and Load Forecast
Forecast
Annual energy bill cost reduction [$] 33,200 30,500
Number of cycles at 80% DoD [cyc/yr] 212 365
Battery Lifetime [yrs] 14.2 8.2
Fixed cost simple payboack time [yrs] 5.7 6.2
Total profit at end of battery lifetime
(annual energy bill savings x battery 281,000 60,000
lifetime - fixed costs) [$]
Results 1n table below shows that the incorporation of forecast data was shown to dramatically increase

[L.ocal Vol-Var Control for PV Inverters

~

By combining USI-forecast and distribution
system simulation using OpenDSS, we were
able to design and demonstrate the impact of
local volt-var control on the distribution
network. With appropriate control design, the
use of PV inverter reactive support will lessen
the adverse impact of high PV penetration.

Cloud Heigh; -
Time (PST): ®

Cloud cover simulation on SDG&E feeder
using sky imager forecast. The green lines
are feeder distribution lines. Whitish area

K is covered by cloud.
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Local Volt-Var control helps to bring the voltage
level of the whole feeder up. The red lines show
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Centralized and Distributed Control for PV Inverters and ESSs

\_

We are designing centralized and distributed control for multiple power inverters, storage
systems, EV chargers, etc. for UCSD microgrid and SDG&E feeders. The distributed control will

(1) mitigate the impact of high penetration PV and
interaction between all devices in smart grid setup.

(2) optimize the communication and
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Power System Restoration With Transient Stability

@

Terrence W.K. Mak, Hassan Hijazi, and Pascal Van Hentenryck

Power System Restoration

 Why? Natural disasters, infrastructure ageing, operator errors ...

* Qutcome: A city could be in a total blackout

Restoration Ordering Problem

» Goal: Compute the best restoration ordering [x4, X5, X3, ..., X\]
of damaged items such that loads could be brought up as
quickly as possible [PSCC'11]

Fix tem o Fix tem a3, 24,..., IN

Fix tem z

Inttial
Steady State

Final Steady
State N

Transient Stability Assumption

» Assumption: Traversing from one steady state to the other must
always be feasible

* What we know: Different generator dispatches will have
different rotor stability [PSCC’14]

-7

Restoration Case: Gen 1 Rotor Angle (Deg)

20

10 ==Case 1

0 ~ =Case 2
-10 ~Case 3
-20 ~=Case 4
-30 | | | | | | ~=Case 5

9.5 10 10.5 11 11.5 12 12.5 13
Time (sec)

Case Bus 1 Bus 2 Bus 1 Bus 2 Gen 1 Pow. Gen 2 Pow. 1st Swing

Volt. (kV) Volt. (kV) Ang. (deg) Ang. (deg) (MW/Mvar) (MW/Mvar) (deg)
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Stability Enhancement Routine

 Research goal: Given a restoration order, can we guarantee
rotor stability?

Fix item X3, X4,..., X

N
Final Steady
State N

Fix item X3, X4,..., X

N
Final Steady
State N

1. Solve Restoration Ordering Problem

!

2. Extract steady state sequence for
transient stability enhancement

Fix item X2

Fix item X|

|

All steady yes

states checked? > END

nol

3. Remove islands unrelated to line closing

l

4. Construct admittance matrices and
perform Kron reduction

l

5. Solve Rotor Stability Optimization Model

Challenge: Rotor swings are governed by 1t order differential
equations.

We design a non-linear model including generator dispatches to
minimize the rotor swings [AAAI'15]

Experimental Results

Study: whether the steady states returned by the ROP are
transient-stable

Measure: Minimum change in generator dispatches to ensure
transient stability

Benchmarks: 6, 14, 30, 39, 57 bus from MATPOWER
Implementation: AMPL with IPOPT 3.11

6 Bus 14 Bus

1 14628  97.24 0.00 -47.58  221.12/143.46 20.0/18.00 44.229
2 14628  146.28 0.00 -35.33 2074272805 20.00/78.32 31.249
3 14628 141.725 0 -1214  102.59/10.66 102.59/10.66 10.385
4 14628 123.84 0.00 0.00 61.05¥48.08 143.85/-30.00 0.619
5 14628  146.28 0.00 0.00 45.37/6.10 157.31/3.16  0.002

30 Bus
Maximum Rotor Swing Maximum Rotor Swing Maximum Rotor Swing
Gen. Reactance 90 40 10 1 90 40 10 1 90 40 10 1
0.02 0.00002 0.00002 0.00002 0.17967 0.00000  0.00000 0.00000 6.53902 0.00004 0.00003 0.00004 2.91547
0.06 0.00003 0.00003 0.00003 0.10593 0.00000  0.00000 0.00000 8.67193 0.00004 0.00003 0.00004 3.07084
0.10 0.00003 0.00002 0.00002 0.00843 0.00000  0.00000 0.00000 8.18311 0.00004 0.00004 0.00004 3.76922
0.14 0.00002 0.00003 0.00002 0.30335 0.00000  0.00000 0.00000 6.09923 (1) | 0.00004 0.00005 0.00004 4.17696
0.20 0.00003  0.00003 0.00003 1.01248 0.00000  0.00000 0.00000 3.66457 (3) | 0.00004 0.00004 0.00004 4.07680
39 Bus 57 Bus
Maximum Rotor Swing Maximum Rotor Swing
Gen. Reactance 90 40 10 | 90 40 10 1
0.02 0.00001 0.00001 20.52951 7.95879 (6) | 0.00000  0.00000 0.66260 131.39311
0.06 0.00001 0.00001 81.80927 (1) 0.00002(7) | 0.00000  0.00000 1.36766 1.12417 (21)
0.10 042052 0.28436 (1) 78.24781  48.13747 (5) | 0.23766  0.23766 39.33088 1.14312 (21)
0.14 049691 0.49698 60.35684  41.99449 (5) | 0.68299 0.67222(1)  73.84672 1.26118 (21)
0.20 0.00002  0.00002 3426957 69.35875(3) | 0.83704 0.83744  120.01411 (1) 1.41655(21)
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- - 2 control cases . Open-Loop / Discharge during
Abstract MOdellng aggregatlon Of electricity peak hours
PEVs 2 charging rates : L1 chargers (1.44kWh) / L2

Vehicle-to-grid (V2G) capable Plug-in Electric Vehicles (PEV)
communicates with the grid, stores energy, and can return
energy to the electric grid. We develop a novel modeling 500 e(t) =

chargers (6.6k\Wh
Transport Based model gers ( )

(e +v+w)ppe (- ) — (u+v+whvagsm(-,t)||2

. . . . [+ v +w)vogsim{-.£)| |2
approach, which 1s based on a system of partial differential 400
equations (PDE§) , to aggregate e.lnd control large pqpulatlons - Case Mean error
of PEVs. This framework 1s very well suited and 300 = 5 3 T T
computationally efficient to address tomorrow’s challenge of uxt o, e — Pel ZO0P &1 SNArget P
designing the best strategies for PEV smart charging. First, we Nb of y— — o\ Open Loop L2 charger 2.3%
validate our model on the Vehicle-to-grid simulator (V2G- cars 100 &; e e S V2G control L1 charger 0.2%
Sim). Then we demonstrate that this approach can be used to 0 T "* V2G control L2 charger 2 8%
manage fleets of vehicles and permit a PEV aggregator to o B2 02 03 04 o5 06 07 oz [k 1
participate in the regulation market (provide energy to the x : State of Energy (SOE) - -
grid), and supply PEV drivers with sufficient charge. . O ptl m al Co ntrOI Of ve h IC I es
o \E/e?lclesl fcI:hargefat rs_tel e ((]f(’t) d) P Choose the best flows between G2V, V2G and
Objective xternal flows of vehicles (from road) i (x.1) " Idle (minimize aggregator cost) such that: every
[e(x, 1 +dt) —du(x,r)]dxz .y (6) driver is satisfled and the aggregator supplies
i 9e(xN)ulx, 1)l — qe(x+dx, ulx +dx,1)dl + Oy (x.1) energy to the regulation market. Main
"R assumptions:
5 Vehicle-To-Grid Framework « Electricity cost C,,.., departures Dep,
KON et i des i
| ; 1 The aggregator regulation power P9S are known one day in
3= () CHARGE /Gav|  controls the number advance. o
4 /Adt\ of vehicles in each » Cars must depart with minimum SOE X,
e __________ Control Formulation
Control Formulation
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" 7 7
@ Develop an aggregation model for _— w(x,t) (sells up =0, Vi=0,
large fleets of electric vehicles 0 Battery SOE, x ! energy) 10 = uo j(jAx), v =vo j(jAx), w9 =wo ;(jAx), Vj.
| @ Design a smart control algorithm to Coupled system of PDEs: W VWi Deph > 0,
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Electric Vehicles V2G-Sim is an agent-based F}ép_JDeP'}:D"’""
simulator that models the driving g J
ﬁ and charging behavior of individual * . "B Ax ) u’,V V?’ W“}’ = Nmin
PEVs. It is developed by the Grid vaG-sim J=Ydep
Prepare the country for the Integration Group at LBNL. After discretization of PDEs, we formulate the
Transportation revolution | | - | Linear Program above, and solve it using a LP
Data: 17805 vehicles in California during a solver.
Facilitate emergence of V2G week-day from National Household Travel . Time horizon: 24h
aggregators Survey (NHTS) 2009. The fleet is composed of . Number of cars: 2300 (taken from NHTS)

Nissan Leaf cars. - Charging rate: 1.9kWh

Optimal Charging of Vehicle-to-Grid Fleets
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» The aggregator computes flows between idle
and G2V: EVs charge when price of electricity is
lower.

» V2G cars supply required energy to the grid.

Ratio Cost/\V2G Power

0.5 —Xdep=0.7 ,Nmin=800
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Cost ™
kW) 0.2 . Then, becomes =
. infeasible
01 e T e i
____________ -
---------------------------------------------- e
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Percentage of total capacity kept for the regulation market

» The optimization allows economies of scale:
cost per produced kW decreases as required
energy increases.

Conclusion

€ The model is validated, PDE techniques are well
suited for large populations of Evs.

€ The optimization program allows EV aggregators to
optimize their cost while participating to the
regulation market and satisfy every driver.

€ How can we integrate grid constraints into this
framework?
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Island Russkiy - test field for the research of emergency control in microgrids

Khmelik M.!?, Gorte O.%, Arestova A.3, Grobovoy A.>

Skolkovo Institute of Science and Technology!, Novosibirsk State Technical University?,
Novosibirsk State University?
E-mail: mikhail.khmelik@skoltech.ru

Introduction

Russian power system doesn't have any test fields for study and
development of scientific, technological and economic solutions in
microgrids and virtual power plants (VPP). This fact stops the work on
implementing modern technologies on electricity generation, distribution
and consumption. However, this topic is one of the prioritized in Europe
and US. Taking into account convenient geographical position of Island
Russkiy and recently renewed energy infrastructure, as well as potential
for solar and wind energy, one can find the island very perceptive, unique
test field for experiments and research in microgrids.

[
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Y
Y
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. (b) : |
>|— - WPP || - Solar plant &\ - Wave plant
A|- CHP |ftY|- Energy storage | = | - Fuel Cells

Figure | — Possible stages of power system development on the Island.
Solid lines — existing power lines, dashed lines — possible lines.

Voltage levels: yellow color — 220 kV, red — 100 kV, black — 35 kV, blue — 10 kV.

Methods

The purpose of the work is to test possible smart grid components, such
us energy storage devices, for emergency control in the microgrid power
system. To do this an adequate mathematical model of Island Russkiy’s
power system is required.

Thus the first stage was focused on model creation and validation. The
base regime is designed so there is a power flow from the main grid to
the Island. Then, the following test was set:

Trip of the 220 kV overhead line that connects the Island to Primorskaya
power system. T he microgrid will operate in islanded mode.

The intent is to show the frequency control possibilities of an energy
storage device as well as power oscillations damping during lack of
generation.
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Figure 3 — MATLAB/Simulink model of the energy storage with AC/DC converter.
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Figure 2 — MATLAB/Simulink model of the power system.
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The model of the power system was created in EUROSTAG 5.1 as we
The first software was used for fast modelling of only electromec
network. The second one was used for electromagnetic and electromec
detailed model — it consists of full models of synchronous machines, Rowen’s models for gas
turbines [4] and energy storage device (ES) with on converter (figure 3). It was assumed that
energy storage has rated capacity of 5 MWe and located on the Far East Federal University
campus.
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IGBT Bridge

Island Russkiy’s power system consists of four combined heat and power plants (CHPs) that have

rated capacity from 2.8 to 28.4 MWe (see [|-3] for details) with total rated capacity on the island
of 45 MWVe.

Generation voltage level is 10 kV and all power plants are connected by 35kV radial cable lines.
The microgrid has connection to the mainland by 220 kV marine cable and overhead line, through
substation (SS) Russkaya.

Centralnaya CHP is the biggest one with 6 installed gas turbines (28.4 MWVe). The highest
consumption is Far East Federal University (35 MWe) and is located at the same node.

| as in MATLAB/Simulink.

nanical processes in the
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Results

For both models disconnection from the grid was simulated. One can see the results for
EUROSTAG on figure 4 and for MATLAB/Simulink on figure 5. in both cases under
frequency load shedding (UFLS) was modelled as a standard tool for emergency control
[5]. Then a joint operation of UFLS and ES was studied.

It is clear that energy storage device can significantly improve the quality of transients. For
example, there were no load shedding during operation, after the disturbance. Also the
resulting low-frequency oscillations of gas turbines’ power due to speed controller
characteristics were quickly dumped.
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Figure 4 — Energy storage device active power (a)
and frequency at the Centralnaya CHP node for
EUROSTAG 5.1:
|) no control actions, 2) UFLS, 3) UFLS and ES

Figure 5 — Energy storage device active power (a)

and frequency at the Centralnaya CHP node for
MATLAB/Simulink:
|) UFLS, 2) UFLS and ES

Conclusions

The Russkiy Island may become one of the most convenient places for testing new
technologies in Russian power system. This work presents one of the most probable
network topologies. Two models were designed based on this network configuration —

simplified EUROSTAG 5.1 model and relatively detailed MATLAB/Simulink.

The study was focused on application of energy storage device for frequency control in
the system. The results for both models showed that with proper control ES can be highly
effective for microgrid stability.

Recently, detailed information on the current structure on Island Russkiy power system
was obtained, so future work will be dedicated to model detalization and validation.
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Constrained optimization formalizes the instanton problem.

By definition, the instanton is the most likely renewable generation
pattern that violates one or more network constraints. To find the
instanton candidate for a single constraint, we minimize deviation
from forecast while saturating that constraint.

The linear DC instanton problem has questionable accuracy.

When the DC power flow approximation is applied to the instanton
problem, an analytic solution may be found by matrix inversion.
Because the instanton lies on a network constraint, however, DC
assumptions (like flat voltage profile) are suspect. minz (Qr — QD) TA(Qr — Q%)

subject to network constraints and saturated constraint
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Accommodating non-flat voltage profiles improves instanton
accuracy.

The new method maintains convexity while accommodating non-flat
voltage profiles and reactive power injections.

Previous analysis uses DC power flow assumptions: 1) no line
resistance, 2) small angle differences, 3) flat voltage profile, 4) no
reactive power flows. Retain first two assumptions, drop last two.

\ 4

13 314 303
0

Approximate expressions for real and imaginary current:

: : Re(l;;) = —By|Im(E;) — Im(Ey)]
Ob‘lecuves— Im(l;) = Bjx|Re(E;) — Re(Ey)]

Square each term to obtain approximate current magnitude:
|Iik|2 ~ Bik(ViZ ~+ sz — ZVin COS gik)

Solve for angle:

3
/
/
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Abstract

We study a stochastic model of an ensemble of Thermostatically Controlled
Loads. The study includes direct Markov Chain simulations of the ensemble, validation of the
results against the Fokker-Planck type of theory in the regimes amenable for analytics, and
then numerical exploration of various non-equilibrium properties of the system in more
challenging regimes, e.g. analyzing response to demand response perturbations of practical
interest. This is an early report on the study aimed at designing new controls of the TCL
ensembles.

The simplest model without control

The simplest model describes a behavior of a large number N of identical customers under the effect of the ambient. The state of a customer is
characterized by the temperature, denoted by T. Stochastic dynamics for the temperature relaxation process is given by the Langevin equation:
- 1 . . . <&()>=0
T=—=(T—-T, + &(T,t), where the Gaussian noise é(T,t) is assumed be
(1= Toue) + 810 a2 {< E(t)E(E) > =D - 8(t, — 1)

The solution:

2
1 1 ( ((T_Tout)+(Tout_T0)e_t/T) )
cexp| — :

i — (1o )

The Fokker-Plank equation, established for such a system:

p= %aT[(T — Toue)p] + ga%TP
p(T,0) = 6(T —T))

p(T,t) =

_—

The simple iteration method in application to the Langevin equation: Tiz1=T; — %(Ti — T,out) + EVdL.

Two states control modelling Results of the simplest model simulations

In the two states control modeling the state of a customer is described by the inside
temperature, denoted by T and a discrete variable j that attains values j = 2 and j = 1 for the
device (air conditioner) being off and on, respectively. Each regime is given by the Langevin
equation aforementioned:

]
|

= —2(T = T)+ &0,
where T, and T; are the outside temperature and the inside temperature for permanently

working air conditioner. We set dead-bands by initiating the bounds of the comfort zone T;,,n
and T,,,,. Achieving one of them we change over the conditioner program.

The system of Fokker-Plank equations, established for such a model:

—
m
|

Probability density

Average temperature
Dispersion

d D 92 0
% = ;szl — o (i(Mp1) = 121(T)pz + 112(T)p1

2 D 32 9 ’
P2 = 258 — = (f,(T)p2) — 112(T)py + 121 (Tp2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
195 o0 05 , 0 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
Time Time

The dispersion dependence on time.

Temperature

1 The stationary temperature distribution

f=-1-7)
112(T) =1-0(T — Tup)
11(T) =r1- 0(T — Taown)

The average temperature dependence on time.

where ) ) )
Blue line — simulation result

Green line — theoretically established function
Dt _Zt/
o) =—(1-e"/)

Blue line — simulation result
Green line — theoretically established function

_t
Taverage (1) = Tour — Tour—To)e /v

Green line — solution to the Fokker-Plank
equation

We use r — oo limit, because it is a correct way to describe the situation of instantaneous

switching, once out of range. Simulation parameters N = 50 000 Mtime = 1000 (dt = 0.01) D=0.3 £=0.3 Ty = 20°C T, =15°C

A range of parameters, such as D, 1, T,,;;, N and Mtime, effect the temperature relaxation process. The more D or t are, the wider the temperature
distribution is and the more the stationary dispersion value is. The less dt is, the closer to reality we are, but the more time steps we have to do to achieve
the stationarity so the more the time of calculations is. The diminution between T,,,; and T, influences the relaxation time.

Results of the two states control model simulations
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The temperature of a random customer on time. The number of ON-state customers on time.

The average temperature dependence on time. The dispersion dependence on time.
Because of noise perturbations are decreasing in
time and approaching to N/2. If we set, for example,
heating force bigger than the freezing one, the

stationary number will be bigger.

While all customers are switched off/on, the dispersion
is as the same as in the simplest case without control.
Perturbations of the dispersion are decreasing in time
quite slowly.

Perturbations are quite high at the beginning, but they are
decreasing in time.

Because of control the customers go back and forth
between dead-bands passing round.

N = 100 000
T, = 10°C

Mtime = 1000  dt = 0.01
T, = 20°C T, = 24°C

D=0.3 7=0.3

Simulation parameters Taown = 21°C Ty, = 230€
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Probability density
Probability density
Probability density
Probability density

0
2 M5 22 225 3 . . . . 2 A5 22 225 I3

218 22

Temperature

222 k 218 22 222

Temperature Temperature

Temperature

The stationary temperature distribution for ON-state
customers

The peak is shifted to the left because the freezing force is
getting less effective with the temperature decreasing.

Probability density

218 22 22

Temperature

The stationary temperature distribution for all customers

The stationary temperature distribution for OFF-state customers

The peak is shifted to the right because the heating force is getting
less effective with the temperature increasing.

Simulation parameters

N =200 000
D=0.3

Mtime = 500 (dt = 0.01)
=03

T, = 10°C
T, = 20°C
Taown = 21°C

T, = 24°C
Ty =123°C

The probabilities of having any temperature from 21.6°C to 22.4°C
are the same. The character of distribution tails is effected by
noise.

The stationary temperature distribution for ON
state customers

The freezing force is negligible close to T;.

Probability density

21 215 22 X5 23

Temperature

The stationary temperature distribution for all customers

Conclusion and plans for future

The stationary temperature distribution for OFF-
state customers

The heating force is negligible close to T,.

Simulation parameters

N =200 000
D=0.3

Mtime = 500 (dt = 0.01)
=03

T, = 10°C
T, = 20°C
Taown = 20°C

T, = 24°C
T,p = 24°C

The closer to dead-band the temperature is, the
more important the role of noise becomes.

We have researched some system properties concerning to stationary temperature distributions and some time-variable characteristics in different regimes. These results are preliminary. In the nearest future we are planning to validate our results
theoretically. The system behavior researching brings us to creation of an algorithm of demand-response control.
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ABSTRACT

As of today, solutions to the reactive power flow can be found only via
numerical methods, yet an analytical understanding would be beneficial to the
rigorous design of future electric grids. Firstly, for sufficiently high reference
voltages, we guarantee the existence of a high-voltage solution for the reactive
power flow and provide its approximate analytical expression (RDC
approximation). We validate the accuracy of our approximation through
numerical simulation of the IEEE 37 test case. Secondly, we consider a recently
proposed droop control for voltage stabilization in a microgrid equipped with
inverters. We prove the existence and the exponential stability of a high-voltage
fixed point of the closed-loop dynamics. We provide an approximate expression
for this fixed point.

TWO-NODE GRID

Figure 1 shows a grid composed by a source (or PV bus) and a load (or PQ
bus), connected by a power line. The reactive power flow at the load reads

Qr = Vg@—VLVS COS(@L—Qs)é—VLVS Siﬂ(@L—QS)g ~ Vgﬁ—VLVSf. (1)

The last approximation derives from the fact that during regular power system
operation the angles difference is negligible.

fixed ej s Vel
TPy i P+ i@)

Figure 1: two-node grid

In the two-node case (1) becomes a second order equation with solution

1 1 40; | \/ 4Q7
— — 4+ —4 /14 f > .
Viia=Vs| 5 +3 0 i Vs 2 ¢

If 4Q1,/(¢V3) < 1 the first-order Taylor expansion of the square root yields

Vi~ Vs A EQVI;’ Vi =~ ZQVZ;

The solution Vi, 1 is the desired one, as it corresponds to a high-voltage low-

current configuration for the network, resulting in low power losses. We can
interpret the solution as being an odd-exponent power expansion in the source
voltage Vg, with the first term neglected being of the order of 1/V¢.

RDC APPROXIMATION

with the two-node grid, we model a power

In order to generalize the concepts introduced :

L.

network in synchronous steady-state as a
connected graph (see Figure 2). The nodes of s l

I

the graph are partitioned into sources (or PV

-
=

buses, red circles in Figure 2) and loads (or PQ

buses, blue squares in Figure 2); the edges ‘
o

represent the power lines.

By applying the same decoupling assumption

9 2

[
=

.

Figure 2: |EEE 37 grid

0
4

introduced for the two-node case, the reactive

power flow reads

0
—O-

Qr =diag(Vy) |[Lrr Lis] Vel (2)

<
|

Power Flow

(P,Q,E,0)

|

Decoupling
assumption

N

Active Reactive
Power Flow Power Flow

(P.6) (Q.E)

e DC approximation e RDC approximation
e Voltage stabilization

Our contribution

It is not possible to derive an explicit analytic solution for the system (2) of
quadratic equations in the variables Vi, yet the practical importance of the
reactive power flow motivates the interest in extending the results of the two-
node case to the system (2). To this end the preliminary concepts of source
baseline voltage V and source voltage spread 1 must be introduced:

Vi i=min{V;,i€ S} n: Vo= (1+nVy.

Theorem (RDC approximation).

4| L7 - . . .
If Ex > \/ , | LLH_lHQLH — the reactive power flow admits the solution
min;{|1 + (L;;Lrsn)i|?}

1
VL:VEDC—FO(—S)
VN

_ .. _ _
where VLRDC = V(1 — LL}JLLSU) + V_N(LL}Jdlag 1(]1 — LLiLLSn)QL) .

It is worth noticing that the threshold above which the existence of a solution is
guaranteed is a generalization of the threshold found for the two-node grid; in

VRDC

the same way, the RDC approximation V"~ generalizes the Taylor-expansion

proposed in the two-node case.

NUMERICAL ACCURACY

We studied the IEEE 37 test case
(Figure 2) and compared the RDC
approximation to the numerical
solution of the system (2), for
different values of the baseline
voltage V. Figure 3 reports the
relative approximation error: we can
notice that at the network operating
voltage of 4.8 kV the relative error
is of the order of 1079

Moreover, one can measure from 037 05 | e '2 s 4 5
the plot that the approximation

error tends to zero as 1/Vy, as Figure 3: the relative
predicted by the above Theorem. approximation error

APPLICATION TO DROOP CONTROL

The RDC approximation can be used to study the problem of voltage
stabilization in an inverter-based microgrid. The sources of the grid represent
inverters which are regulated by [2]:

Vi=-CiVi(V; = VE —Q;, i€S8,

where V. is the reference voltage for inverter 7 and C, is a fixed parameter.
Coupling this control law with the reactive power flow (1) yields

0] _ Q1 e
VS N _Cdiag(Vs)(VR—VS)_ dlag(V)LV.

By using the RDC approximation it is possible to show that such differential-
algebraic system possesses a high-voltage locally exponentially stable fixed point
and to provide an approximate expression of the fixed point.
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General Description

Abstract

Developing methods for state estimation and system identification are essential for increasing
the reliability of the power grid. Typically this problem has been solved on steady state time
scales, however faster dynamics are becoming more important and with the deployment of
phasor measurement units (PMUs) fast estimation is now possible. To do this fast estimation a
layered architecture that integrates state estimation, change point detection, and disturbance
classification is used. By thinking of these estimation algorithms along with controls as a
layered system it improves our ability to design optimal architectures that are both fast and
flexible. State Estimation can be achieved using Kalman filtering and particle based techniques
which assume a system topology and dynamics model. These techniques are adapted to the
differential algebraic equations that describe the power system and their robustness is
explored. Using these estimates we can make predictions of the future outputs which then are
compared to the PMU data to identify unexpected deviations. These change points then trigger
a topology change classifier to identify the new topology of the system after a fault and also
triggers a fault tracker to track the state through faults that are cleared. Finally, questions of
general architecture design are raised such as how to optimally link these estimation modules
and optimally place sensors to achieve all these objectives.

Introduction
Obijective:

Develop an architecture to track the dynamic state and topology of a power system over fast, sub-second,
time scales that can then be used to make control decisions.

Power System Model:

Differential Algebraic Equations
ODEs:

 Machine Models .
» Exciter Models x =t (X7 Y u)
e Turbine Governor Models
Equality Constraints:
* Bus Power Injections
0=g(x,y,u)

* Machine Constraints
} z =h(x,y,u)

Variables

. Dynamic State

» Generator Angles, Frequencies, Axis Voltages
 Control Internal States

. Algebraic Variables

» Bus Voltages

» Generator Field Voltages, Powers, Torques
» Control Constraints

» Control Constraints

Output:

* PMUs

. Inputs

: Observations
» Bus Voltages

Power System Estimation and Control Architecture

Power System

Sensors: PMUs

Use a PMU placement and
sensor selection strategy that
maximizes the information
gain for this architecture.
Since dynamics are taken into
account the systemis
observable with fewer PMUs
than static state estimation.

Control Layer

Based upon the risk and estimates deploy control policies such as state feedback or remedial action schemes.

Forward Prediction

Use the state estimate distribution and the
model to evolve the distribution forward in time
to make a prediction about future outputs.

Gaussian Prediction Model

2k+1:k—|—m ~ N (Mk+1:k+m7 Fk+1:k+m)

Risk Assessment

Use the state estimate distribution, models, and predictions to evaluate
the risk to the power system ie stability analysis or flow constraint
# violations.

v 3

Global State Estimation

Use full dynamic model, global state
estimate, and PMU measurements to
simultaneously estimate all machine
and control states.

Error Measure

E (Zk+1:k+m) —

Local State Fault Tracking

Change Point Detection

Take the forward predictions and evaluate
the errors between the predicted and
observed values. Decide if those errors
are likely caused by a model change.

(Zk+1:k+m_ﬂk+1:k+m)

Topology Classification:

Evaluate the relative likelihood of each
model given the observations using the
distribution derived from the forward
prediction.

Bayesian Model Class Selection
P (M; | Zxi1:k0m) X P (Zii1:60m | M) P (M)

Tpr-1
Fk+1;k+m(Zk+1:k+m_/ffk+1:k+m)

Update the local state of each device
using the past estimate, local
dynamics, and local PMU
measurement.

«Set error measure threshold to minimize
incorrect detection rate

m x|

Global and Local State Estimation Detaills

State Estimation

Extended Kalman Filter Numerical Integration Methods

Nonlinear System Euler:
Xk = § (Xk—1) + Wk Xk = Xk—1 + f (Xk—1, yk—1) At
Zx = 9 (Xx) + i 0=g(XKk-1,Yk-1)
Prediction 0 = g (Xk, yx)
Rii-1 = § (Ki1jc-1) Predictor Corrector:
Pk\k—l — Fk—lpk—l\k—lFE_l - Qk Xk = Xk_1 + % (f (Xk—la yk_1> +f (f(k, ka»
Fr1= g—i E Xx = Xk—1 + Atf (Xx_1, yk—1)
0=g(Xk-1,Yk-1)
0 =g (Xx, Yk)
) 0 = g (Xk, yi)
ox 1 Xk|k—-1

. Implicit Midpoint:
Correction - At (¢ ]
Ky 1 = P 1 HES L Xk = X1+ 5 (£ (X1, y1e-1) + £ (x5, y10)

' - klk-1 0 =g (Xxk—1,¥Yk-1
Xk|k = Xk|k—1 + Kk\k—l (Zk — Zk\k—l) 0 = g Exk yk> )

Py = (I - Kk\k—lﬂk) Pyjk-1 Solve discrete DAE with Newton's Method

State
x ~ N (x,P)
Zik—1 = 9 (Rix—1)

Skik—1 = HiPy—1Hy + Ry

Hy =2

Output
z ~ N (Z,S)

Integration Robustness

Robustness to Process Noise Model

—Euler
104 PC
—Implicit Midpoint

Scaled Error Measure

'4 10~ 10° 10
Relative Noise Level (Sec)

5 Sampling Rate Performance
'—Euler

—PC

\—Implicit Midpoint

Scaled Error Measure

-3 -1

10~ 10
Sampling Time Step (Sec)
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Test System

Thirty Seven Bus System

Response to Cleared Fault

—

PSAT implementation of a PowerWorld test system 8_
with thirty seven buses, nine machines and seven —1.02;
turbine governors. A three phase fault occurs at bus
94 and is cleared. 1 01}

1 S

INo Fault Detection
[Fault Detection
Fault Classification
B Local Estimation
I—Truthl

2 3 4
Time (Sec)
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